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Phase Equilibria for Polymer Mixtures 1 

Y. Song-" 

The perturbed hard-sphere-chain (PFISC) equation of state is applied to 
calculate phase diagrams o f  ternary mixtures containing polymers. Special atten- 
tion is given to the effects of polymer molecular weight, pressure, temperature, 
and various molecuhn" parameters. 

KEY WORDS: equation o f  state: phase diagrams: polymer solution: ternary 
systems, 

1. INTRODUCTION 

It has been recognized for some time that thermodynamic properties of 
polymer mixtures depend on the properties of solvents and polymers and 
equations of state provide useful tools fbr correlating and estimating 
thermodynamic properties of polymer mixtures [ 1, 2]. For example, the 
equation-of-state theory has successfully explained both lower critical solu- 
tion temperature (LCST) and upper critical solution temperature (UCST) 
phenomena for polymer solutions. The classical Flory-Huggins equation 
[3] ignores the thermodynamic properties of pure components and com- 
pletely fails to describe LCST behavior. 

In general, an equation-of-state approach to polymer mixtures starts 
with describing properties of the pure components; extensions to mixtures 
follow soon after success for pure systems. This approach usually involves 
using arbitrary mixing and combining rules to obtain parameters from the 
pure components for mixtures [4]. Recently, there have been an increased 
interest in developing statistical/mechanical based equations of state for 
polymer mixtures. Although a rigorous statistical/mechanical treatment for 
polymers is difficult, because of their asymmetric structure, their large 
number of internal degrees of freedom, and the strong coupling between 
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intra- and intermolecular interactions, a number of equations of state have 
been developed based on a relatively simple model, hard-sphere chains, in 
which a molecule is modeled by a series of freely jointed tangent hard 
spheres [5-12]. Among them is the perturbed hard-sphere-chain (PHSC) 
equation of state, which takes the hard-sphere chains as its reference system 
plus a van der Waals term as the perturbation [ 10-12]. 

For pure fluids and polymers, the PHSC equation of state is charac- 
terized by three molecular parameters: segment number per molecule r, 
segment size a, and nonbonded segment-segment interaction energy e; they 
can be obtained from readily available data for thermodynamic properties 
such as vapor pressures, densities, and compressibilities [10, 12]. For 
mixtures containing polymers, no mixing rules are required for the hard- 
sphere-chain contribution. Only the perturbation needs the van der Waals 
one-fluid mixing theory. The PHSC equation of state can reproduce all 
types of fluid phase equilibria that have been found experimentally in 
binary mixtures containing polymers, including the lower critical solution 
temperature (LCST), the upper critical solution temperature, and the hour 
glass-shaped phase behavior [ 11 ]. For several binary mixtures containing 
polymers, calculated liquid-liquid coexistence curves are in good agree- 
ment with experiment [ 12]. 

In this paper, we apply the PHSC equation of state to ternary mixtures 
containing polymers. We are particularly concerned here with liquid-liquid 
equilibria of ternary systems because of the variety of observed phase 
behavior reported in the literature. We present some calculated phase 
diagrams for ternary mixtures and investigate the effects of polymer 
molecular weight, pressure, and temperature. Conclusions are summarized 
in the last section. 

2. PERTURBED HARD-SPHERE-CHAIN EQUATION OF STATE 

The derivation of the PHSC equation of state for mixtures follows a 
rigorous first-order statistical-mechanical perturbation theory based on a 
mixture of hard-sphere chains as the reference system plus a van der Waals 
term as the perturbatiom details are given in previous publications 
[ 10, 12]. Here we reproduce only the main steps necessary for describing 
the model. 

In general, the PHSC equation of state is applicable to fluid mixtures 
containing any number of components over the entire range of fluid condi- 
tions. Its form for pure fluids is [ 10] 

r~-ap 
P - l + r e b p g ( d + ) - ( r - 1 ) [ g ( d + ) - l ]  - ~ (1) 

pk 13 T 
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where p is the pressure, p = N/V is the number density (N is the number 
of molecules and V the volume), kn is the Boltzmann constant, T is the 
absolute temperature, g(d +) is the radial distribution function of hard 
spheres at contact, and d is the effective hard-sphere diameter; g(d +) is 
calculated from the Carnahan-Starling equation [ 13]: 

1 - rl/2 rbp 
g(d + ) q = (2) 

( 1 - I I )  3' 4 

In Eq. ( 1 ), the first three terms represent the reference equation of state for 
hard-sphere chains, and the last term is a van der Waals-type perturbation 
to take into account attractive forces. The three segment-based parameters 
in Eq. (1), r, b, and a, all have a direct physical interpretation. Parameter 
r represents the number of effective hard spheres per molecule. Parameter 
b represents the second virial coefficient of hard spheres; it is an effective 
van der Waals covolume. Parameter a reflects the strength of attractive 
forces between two nonbonded segments. In the PHSC theory, both a and 
b are temperature dependent according to the Song-Mason method [ 14]: 

a(T)=~na3eF~,(k~T/s), b(T)=~nd3(T)=~ncr3Fh(j'BT/e) (3) 

where e and cr are pair-potential parameters; e is the depth of the minimum 
in the pair potential and a is the separation distance between segment cen- 
ters at this minimum. In Eq. (3), F~, and Fb are two universal functions of 
the reduced temperature, kl~ T/e. They are determined from thermodynamic 
properties of fluid argon and methane over wide ranges of temperature and 
density and they are accurately represented by the following empirical for- 

mulae [ 12]: 

F,,(kl~ T/e) = 1.8681 exp[ --0.0619(kB T/t)] 

+ 0.6715 exp[ -- 1.7317(ksT/e) 3 -'] (4) 

Fb(kt~ T/e) = 0.7303 exp[ -0.1649(k~ T/e) 12] 

+ 0.2697 exp[ - 2.3973(k ~ T/t) 3~ ] (5) 

Extension of Eq. (1) to mixtures is straightforward [ 11, 12]: 

t i t  

�9 d + _ d + P - l + p ~ x s i r j i b ( i g i i (  ~/) x i (r i -1)[gi i (  i i ) - l ]  
pk u T !i i 

#l l  

P_ _ ~ x,xjrioaij (6) 
kBT (j 
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where xi = N j N  is the number fraction of molecules, r~ is the number of 
segments comprised of component i =  1, 2 ..... m, and gu(d , i  ~ ) is the ij pair 
radial distribution function of hard-sphere mixtures at contact. For each 
unlike pair of components ( i r  j), additional parameters, b u, and ag e are 
needed for the mixture; b u is the second cross virial coefficient of hard- 
sphere mixtures, and a 0 is the parameter reflecting attractive forces between 
two unlike nonbonded segments. A combining rule is not necessary for 
calculating b o because hard-sphere diameters are additive: 

bu(T)=~,~d}X/(T)=(bl 3+b~ ~)/8. du(T)= [d,(T)+d/(T)]/2 (7) 

The parameter ag e can be obtained by extending Eq. (3) to mixtures, 

a!e( T) = ~ z a ~ / e u F  , (k. Tee o) (8) 

where, like in pure fluids, a o and e u are associated with a pair potential 
between unlike segments; they can be determined from the pure-component 
parameters by using appropriate combining rules: 

a u =  �89 a/), eu = (e/i~zn), 2 (1 --~u) (9) 

where ~,,j is the adjustable binary parameter. Finally, to obtain a complete 
equation of state fi'om Eq. (6), a suitable mathematical fornl for g u ( d ,  + ) is 
needed and given by the Boublik-Mansoori-Carnahan-Starl ing equation 
for hard-sphere mixtures [ 15 ]: 

I 3 ~,/ 1 ~ .  
(10) 

with 

p ,, p b ib i  13, , ,  
( l l )  

3. P H A S E  D I A G R A M S  O F  T E R N A R Y  S Y S T E M S  

The PHSC equation of state has been applied successfully to correlate 
thermodynamic properties for pure fluids and polymers and binary systems 
containing polymers [10-12].  Here we locus our application on model 
calculations of liquid-liquid phase diagrams of ternary mixtures containing 
polymers. One of the most common ternary system containing polymers is 
that of one solvent with a pair of polymer species. Figure 1 shows a model 
calculation of such a system in which the only difference between two 
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1 
Solvent 

- - - T i e  L i n e  

. . . . .  " f i e  L i n e  

Polymer Polymer 
2 3 

Fig. I. Liquid liquid phase d iagnlm l~,~r a ternary Inixturc 

con ta in ing  one so l \ cn t  and two pol)mcrs.  The paralllCters 

us,,:d arc as follows: r~ = 5. r ,  = 50. n = 5fill. ~'~1 ="z:" = ~ .  
~:tt=~,2_,=~:~. iqz=h.l~=O.OI, ir / , / k l = 0 . O l .  /~,1 and 
T,I :.ire the critical pressure and tcnll)cralurr o f  the solvent. 
respectively. Each apex rgpl'eScllts a pure conlI3oncn{ and c,3ch 

s idd inc  represents  the composi t ion  range of a binary. 

polymers is their molecular weights. The lighter polymer (component 2) is 
miscible with the solvent in all proportions but the heavier polymer (com- 
ponent 3) has limited solubility with the solvent. Each coexistence curve 
corresponds to a fixed temperature. Since this system shows the upper criti- 
cal solution temperature, arising the temperature decreases the size of the 
two-phase region because the energetic effect becomes smaller and the 
entropy of mixing becomes more important. 

Another common ternary system is that of one polymer with one 
solvent and one nonsolvent as shown in Fig. 2. In such a system, it is inter- 
esting to see how much the polymer molecular weights can affect the 
solubility gap. In general, raising the molecular weights of the polymers 
increases the size of the two-phase region because the process reduces the 
opportunities of polymer-solvent contacts. 

Figure 3 shows the phase diagram of a ternary system at the lower 
critical solution temperatures, which can be calculated only by using an 
equation of state. In this system, the only difference among components is 
their molecular weights or chain lengths, as given by different values of r's, 
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1 
Solvent 

�9 P l a i t  P o i n t  

- - - T i e  L i n e  

Nonsolvent Polymer 
2 3 

Fig, 2. Phase d i ag ram for a ternary  mix ture  con ta in ing  one 

po lymer  with one solvent  and  one non solvent,  exh ib i t ing  the 

molect l lar  weight  efli~ct, r; = 2. r 2 = I. a ~  =o '2 ,  = ~ .  

ell  =c_,2 = c~3. I,1: =# , l )  =1c,~ = 0, T T,i = 0.45. p D~: I =0.1 .  

1 
Solvent 

�9 P l a i t  P o i n t  

- - - T i e  L i n e  

. . . . . .  T i e  L i e  

Nonsolvent Polymer 
2 3 

Fig. 3. Phase  d i a g n u n  for a ternary  mixt t i re  exhib i t ing  the 
free-volume effects and  the pressure elTects, both  leading to 

lower cri t ical  so lu t ion  temperatures ,  r~ = 2 .  r ,  = I. r .~=500, 

0 " 1 1  ~ff22 ~G3~, / ; 1 1  ~E22 =,j-~l, h'12=lCi3~h'2~O, TzTr =0.45.  
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which cause the free-volume effects leading to a lower critical solution tem- 
perature between the polymer and the non solvent. It also shows that, at 
the lower critical solution temperature, the mixture is readily compressible, 
therefore, a small change in the pressure can make a significant volume 
change in the mixture. 

Figure 4 shows two binodal curves of a ternary system caused by free- 
volume effects at two difference temperatures. Contrary to the behavior of 
the UCST shown in Fig. 1, raising the temperature increases the size of the 
two-phase region, The physical reason is that the volume changing increases 
when the temperature goes up. 

Figure 5 shows an example, of unexpected phase behavior in a ternary 
system in which there are two compatible polymers and a good solvent to 
both polymers. One would expect that they should still be miscible in all 
proportions in the ternary. But what actually happens is that two com- 
patible polymers become incompatible on the addition of solvent, giving 
rise to a closed two-phase region in the ternary phase diagram. The physi- 
cal explanation is that the addition of solvent, on the one hand, reduces the 
opportunities of polymer-polymer contacts and, on the other hand, may 
introduce an effective repulsion between two polymers. 

1 
Solvent 

I �9 Plait Point 

- - - Tie Line 

..... 13e Line 

Nonsolvent Polymer 
2 3 

Fig. 4. Phase diagram for a ternary mixture exhibiting the 
temperature effect at the lower critical solution temperature. 
1.1=2. r , = l ,  i.~=500, G 1 1 = C 7 2 2 = G ~ 3  - EI1~C22 =F'~t" I'JI2~ 

k'l~ = IQ~ = O, p/P~I =0.1.  
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1 
Solvent 

�9 Plait Point ///~ 

Polymer Polymer 
2 3 

Fig. 5. Phase d i ag ram for a ternary mixture containing a sol- 

vent  with two compatible polymers, exhibiting an unexpected 
phase  behavior ,  r~ = 5. r ,  = r~ = 1000, a l l  = o'_~, = a ~ .  t:_~_, ~:1 = I. 
r,,.x~ r, ii = 1.02. xl_, = x , ~  = 0, h'l~ =0 .01 .  T.T,.I =0.7. p p d  =0.1 .  

4. CONCLUSIONS 

Phase diagrams are presented for a variety of ternary systems containing 
polymers using the PHSC equation of state. Although this equation is 
applicable to any number of components, we are particularly concerned 
with liquid-liquid equilibria in ternary mixtures because liquid-liquid equi- 
libria provide a much more critical test of the theory. Using physically 
reasonable parameters, the PHSC equation of state successfully reproduces 
phase diagrams of ternary systems with effects fi'om polymer molecular 
weights, temperatures, pressures, and various molecular parameters. 
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